
Electrolyte Disturbance in Tube Feeding

Interhospital Geriatrics Meeting

Karen Chan 29 Jul 2011

Case

- F/84
- Old aged home resident
- Bedbound, non-communicable
- History of CVA, depression
- Medication:
- 1. Mirtazapine
- 2. Clonazepam

- Admitted on 23-29/12/2010 for chest infection
- Oropharyngeal dysphagia with high risk of aspiration.

Nutritional status of this patient

- Alb 29 (low)
- Lymphocyte 1.9 (within normal range)
- BW 27.6kg
- Height 1.45m (by bone-length model)
- BMI 13kg/m2

Patient is undernutrition!

• Put on RT feeding

2 months after last admission

- Decrease in consciousness
- Vomiting once of undigested milk
- Cough and sputum
- No diarrhea
- No fever

Physical examination

- Euvolemic
- Temp 34.9°C Mild hypothermia
- BP 104/36 P 68
- SpO2 100% 2L/min NC
- Chest crepitations over RLZ
- CVS HS dual. No murmur
- Abd soft, non-tender, no guarding/ rigidity

Hypotension

Initial investigation results

- CXR Right lower zone hazziness
- ECG: Sinus rhythm. Peaked T waves in precordial leads

Initial investigation results

WBC	10.50	10^9/L	рН	7.51	Н
Neutrophil	9.8	H10^9/L	pCO2	4.48	L kPa
HGB	9.1	L g/dL	pO2	17.97	kPa
			Base Excess	3.3	mmol/L
PLT	87	L 10^9/L	Bicarbonate	25.9	mmol/L

Initial investigation result

Sodium	95	L	mmol/L	Bilirubin, Total	7		umol/L
Potassium	6.3	H	mmol/L	ALP	136		U/L
Urea	7.1	Н	mmol/L	ALT	28		U/L
Creatitine	21	L	umol/L	Calcium	1.85	L	mmol/L
Protein, Total	53	L	g/L	Calcium, alb-adj	2.06	L	mmol/L
Albumin	30	L	g/L	Phosphate	1.03		mmol/L
Globulin	23		g/L	Glucose, (spot	5.2	>	mmol/L

Initial provisional diagnosis

- Chest infection with sepsis
- Hypothermia + Hypotension + Hyponatremia + Hyperkalemia

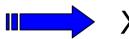
→Adrenal crisis cannot be excluded (Normal glucose level)

Immediate treatment

- NPO
- NS Q8H/pint
- Space blanket
- Intravenous Hydrocortisone 100mg Q8H
- Intravenous Augmentin
- Dextrose-Insulin drip, Resonium C, Calcium gluconate
- Stop Mirtazapine and Clonazepam

More Investigations Results

Cortisol ((spot)	1443 H nmol/L	Serum Osmolality	188 L	mOsm/kg
тѕн 🤇	0.82 mIU/L	Urine Osmolality	336	mOsm/kg
тткс 🤇	7.0	Ur. Sodium	11	mmol/L
<3 indicates decrease		Ur.	1.5	mmol/L
>7 indicat	tes increase	Creatinine		


Why did she have severe hyponatremia?

Causes of hyponatremia

Hypovolemia	GI loss eg. diarrhea, vomiting Renal loss eg. thiazide
Normovolemia	Adrenal insufficiency Hypothyroidism SIADH Primary polydipsia Low dietary solute intake
Hypervolemia	Heart failure Cirrhosis

Cause of hyponatremia in this patient

Euvolemic

X Primary polydipsia (solely tube feeding)

X Hypothyroidism (TSH 0.82 N)

X Adrenal insufficiency (cortisol 1443 H)

Not likely SIADH

(serum/urine osmo 188/336, spot urine Na 11 L)

Reason is Low Dietary Solute Intake ?

Dietary intake of this patient

REMINDER STATES	Ultracal 2 weeks	237ml X 4/day foi	⁻ 2
	Enteric feeding provided	Requirement of healthy people	
Water	40	25-30	ml/kg/day
Energy	36	30	kcal/kg/day
Protein	1.5	0.8-1	g/kg/day

Dietary intake of this patient

Post discharge FU 2 weeks later by dietitian

237ml x 4/day

237ml x 5/day for 8 weeks

	Ultracal	Isocal	
Water	40	52	ml/kg/day
Energy	36	45	kcal/kg/day
Protein	1.5	2.8	g/kg/day

Higher calories and higher protein regimen

Investigations

	1 week before	-	Start RT feeding		10 weeks later		
Sodium	144		142		95	L	mmol/L
Potassium	4.7		4.2		6.3	Н	mmol/L
Urea	9.3	Н	7.3	Н	7.1	Н	mmol/L
Creatinine	45		48		21	L	umol/L
Protein, total	74		68		53	L	g/L
Albumin	32	L	29	L	30	L	g/L
Globulin	42		39		23		g/L
Calcium	2.15	L	2	L	1.85	L	mmol/L
Calcium, alb- adj	2.32		2.22		2.06	L	mmol/L
Phosphate	0.98		0.71	L	1.03		mmol/L

Types of enteric feeding formula

Category	Subcategory	Characteristics	Indications	Examples
Polymeric	Standard	Similar to average diet	Normal digestion	Isocal, Osmolite
	High nitrogen	Protein>15% of total kcal	Catabolism Wound healing	Isocal HN, Osmolite HN
	Caloric dense	2kcal/ml	Fluid restriction Volume intolerance Electrolyte abnormalities	Nutren optimum, Twocal HN
	Fiber- containing	Fiber 5-15g/L	Regulation of bowel function BB有便	Jevity 但中!

237 & H(nL) 美國羅18

Types of enteric feeding formula

Category	Subcategory	Characteristics	Indications	Examples
Monomeric	Partially hydrolyzed Elemental	One or more nutrients are hydrolyzed. Composition varies	Impaired digestive and absorptive capacity	Vital High Nitrogen, Vivonex plus
	Peptide based		Nestie Pepta - JUN COMP	Putamen

Ther Weight ADD N

Category	Sub- category	Characteristics	Indications	Examples
Disease specific	Renal	Less protein, low electrolyte content	Renal failure/ dialysis	Nepro
	Hepatic	High BCAA, Iow AA, low electrolyte content	Hepatic encephalopathy	Aminoleban
	Pulmonary	High % calories from fat	COPD/ARDS	Pulmocare
	Diabetic	Low CHO	DM	Glucerna
	Immune- enhancing	Arginine, glutamine, omega-3 FA, antioxidants	Metabolic stress Immune dysfunction	Oral Impact

根據統計*,

速癒素可有效改善以下癌症治療 問題:

- 「血球數」檢驗不合格而需延遲或 暫停治療
- 反胃嘔吐 食慾不振
- 口腔潰爛 體弱疲倦

速癒素是一種癌症治療專用營養 品。為現時全球唯一同時含有 Arginine、Nucleotides及 Omega3 Fish Oil 的專利配方, 可顯著增加癌症病人的抵抗力, 以緩和癌症治療的副作用。

Ingredients in commonly used formula for tube feeding

				Phosphorus	Dratain	Carls also desta	
Formula	Na(mg)	K (mg)	Ca (mg)	(mg)	Protein (g)	Carbohydrate (g)	Energy (kcal)
lsocal (237ml)	125	310	150	125	15.3	59	250
Osmolite (235ml)	181	310	179	179	10.4	33	250
Isocal HN (237ml)	220	380	200	200	10.4	29	250
Osmolite HN (235ml)	317	425	282	282	13	37	285
Ultracal (237ml)	320	440	240	240	10.7	34	250
Glucerna (250ml)	232.5	392.5	187.5	176.25	10.45	23.9	250
Nepro (237ml)	200	250	325	165	16.6	52.8	474

Dietary intake

In this patient

- Isocal 237ml 5x/day given for 8 weeks
- Electrolyte given/day
- Na 125mg x 5 = 625mg
- K 310mg x 5 = 1550mg
- Energy 250 cal x 5 = 1250kcal

Recommended dietary intake

U.S. Food and Drug Administration Reference Daily Intakes, or RDIs

17		Potassium (g)	Sodium (g)	Chloride (g)
RDA or A	1	5	1003	
Age 51-70) Male	4.7	1.3*	2.0*
C-GREACES AND LLCS	Female	4.7	1.3*	2.0*
Age 70+	Male	4.7	1.2*	1.8*
	Female	4.7	1.2*	1.8*
	o this patient is be	elow the recomme	nded daily d	ietary intake
8	Female		2.3	3.6
Age 70+	Male		2.3	3.6
al ana nyang	Female		2.3	3.6

The values were excerpted from Institute of Medicine, the National Academies, Dietary Reference Intake

Recommendation of enteric feeding

Electrolyte	Daily Requirement	Comments
Sodium (chloride, acetate,	1380 - 3450mg	Basal catabolism:
or phosphate		23-92mg/kg
		Mild-moderate catabolism:
		26-69mg/kg
		Severe catabolism:
		69-93mg/kg
Potassium (chloride, acetate, or phosphate	2730-5850mg	Basal catabolism:
		27-35mg/kg
		Mild-moderate catabolism:
Na given to this patient is below the recommended Na intake !!		
		Severe catabolism:
		78-156mg/kg

Source: Clinical Nutrition, A Resource Book for Delivering Enteral and Parenteral Nutrition for Adults, University of Washington Medical Center and Clinical Nutrition Committee, Harborview Medical Center

Conclusion

 Hyponatremia was caused by low Na intake in this patient

Why did the patient have hyperkalemia?

K supply in RT feeding - 1550mg Not high (RDI - 4700mg, Recommended K supply in enteric feeding -2730-5850mg)

Causes of hyperkalemia

Increase K intake	Potassium supplement, blood transfusion
Transcellular K shift	Acidosis,
	Cellular injury eg hemolysis, tumor lysis syndrome, rhabdomyolysis
	Hyperkalemic periodic paralysis

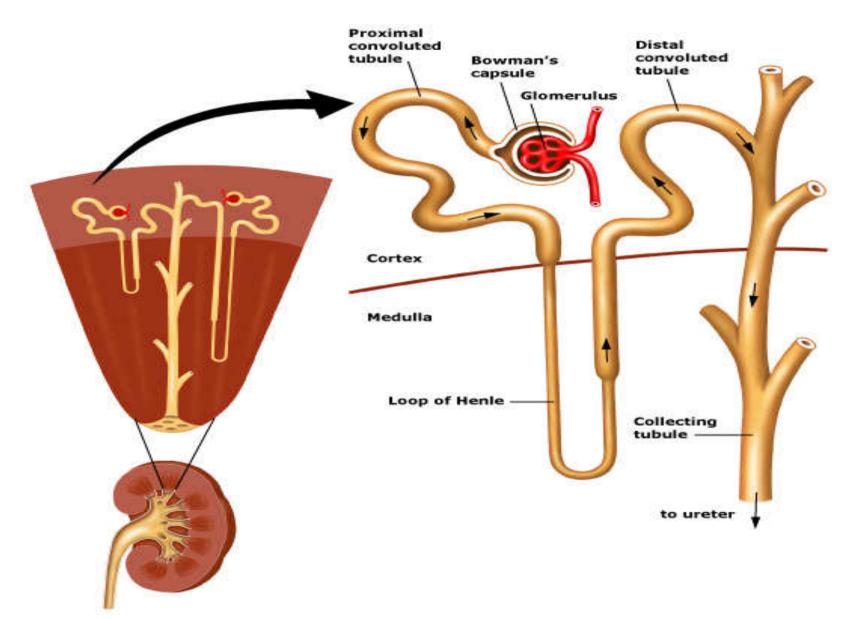
Causes of hyperkalemia

Decrease K	Oliguric renal failure
excretion	Addison disease
	Hyporeninemic hypoaldosteronism
	Renal tubular disease (pseudohypoaldosteron- ism I or II)
	Medications (potassium sparing diuretics)

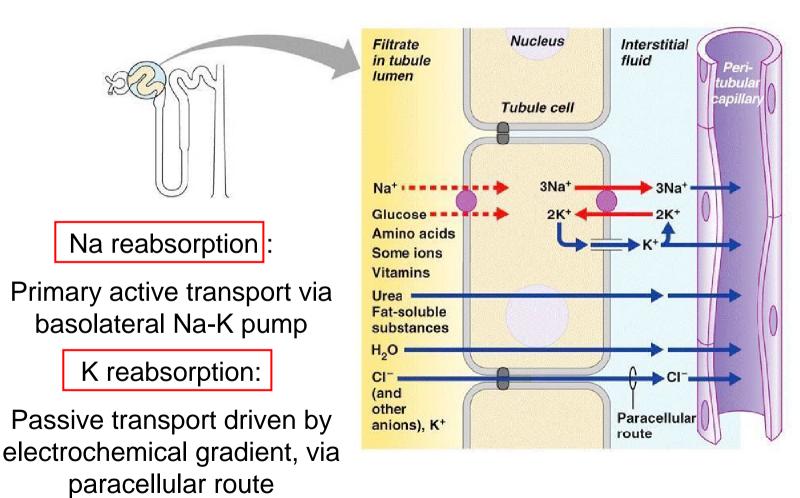
Is it caused by Hyporeninemic Hypoaldosteronism? Or Pseudohypoaldosteronism I/II (type IV RTA)?

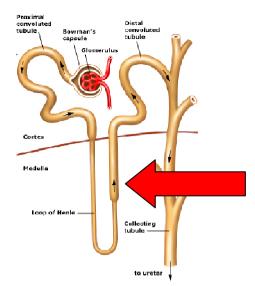
Transtubular Potassium Gradient (TTKG)

TTKG = [U K / (U O sm / P O sm)] / P K

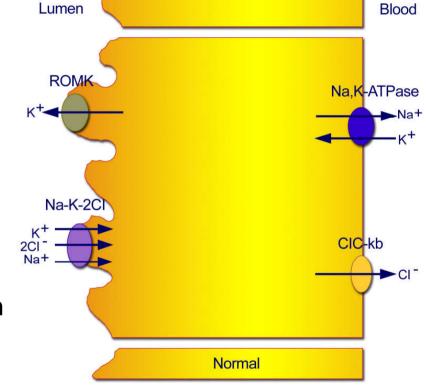

- Estimates mineralocorticoid activity
- Normal range 3-7
- Increase in potassium loading and appropriate aldosterone release and action
- A value of less than 3 in the setting of hyperkalemia usually means an aldosterone lack, either in its release or in its tubular effect.

TTKG 7.0

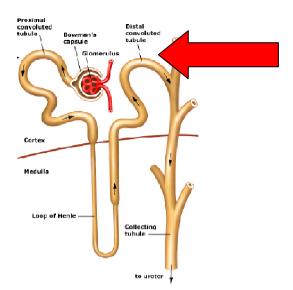

- ==> Aldosterone response or its action is not inadequate
- ==> X Hyporeninemic Hypoaldosteronism
- ==> X Pseudohypoaldosteronism

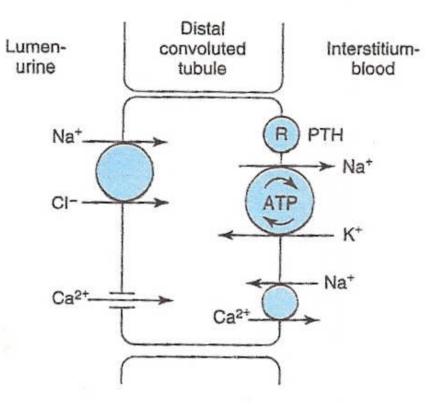

So what is the cause of hyperK?

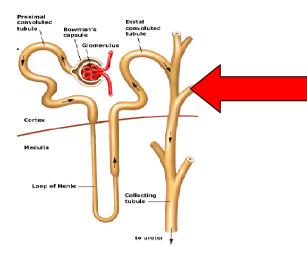
Nephron



Proximal Convoluted Tubule

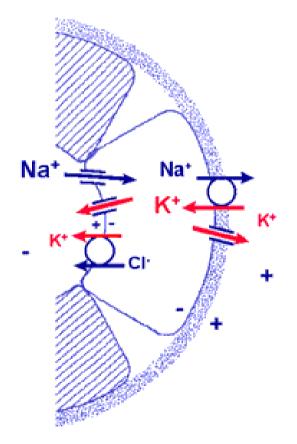



Loop of Henle


Reabsorption of sodium chloride is achieved with the sodium-chloride potassium-chloride cotransporter, which is driven by the low intracellular concentrations of sodium, chloride, and potassium.

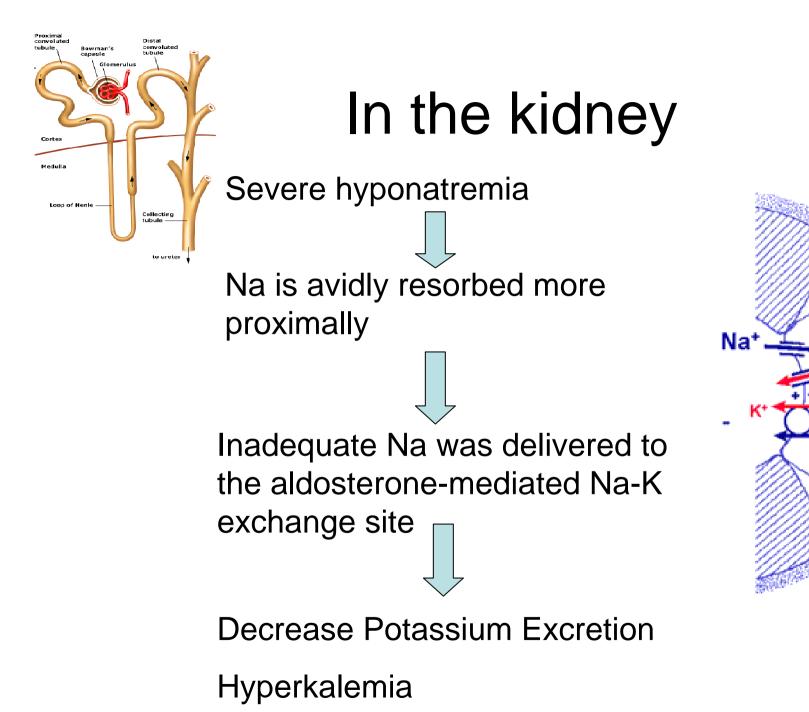
Distal Convoluted Tubule

Na and Cl are reabsorbed via a NaCl cotransporter in the apical membrane and the Na-K ATPase system in the basolateral membrane


Principal cells in Cortical Collecting Tubule

Reabsorption of Na

Na crosses the apical membrane via a Na channel (the ENaC, epithelial Na channel) and is pumped out of the cell across the basolateral membrane by Na-K ATPase.


Passive secretion of K through apical K channels is driven by steep chemical gradient(maintained by basolateral membrane Na-K ATPase)

Stimulated by aldosterone

Factors that affect Potassium excretion

- 1. Sodium delivery to that site must be adequate
- 2. Aldosterone must be present to facilitate the sodium-potassium (Na-K) exchange
- 3. Principal cells must respond to aldosterone
- 4. Urine flow must be brisk enough to wash out the excreted potassium

Nat

Progress

- Add NaCl tablet 900mg bd
- Change tube feeding to Isocal HN 150ml x 5/day (Na 1100mg/day)
- Na supply

= [(900 x 23)/58] x 2 + 1100 = 1800mg/day

K supply

= 380 x 5 = 1900mg/day

+ NaCl

Progress

Change RT feeding formula

L

	-					
	0	2 weeks	3 weeks	2 months	4 months	
		meene	meene			
Sodium	95 L	142	136	130 L	131 L	mmol/L
Potassium	6.3 H	3.0 L	4.1	4.6	4.1	mmol/L
Urea	7.1 H	7.5 H	8.8 H	5.9	7.0	mmol/L
Creatitine	21 L	25 L	32 L	34 L	39	umol/L
Albumin	30	23	26		36	g/L
Calcium, alb-adj			2.34		2.34	mmol/L
Phosphate			0.56 L		1.26	mmol/L

Is electrolytes disturbance common in tube feeding?

Hyponatremia in a nursing home population.

Miller M, Morley JE. Rubenstein LZ. Journal of the American Geriatrics Society. 43(12):1410-3,1995 Dec.

- 119 nursing home patients ages 60 years or older
- Prevalence of hyponatremia

Nursing home patients	18%
Similarly aged ambulatory patients	8%
At least one episode of hyponatremia during 12 months study	53%
Tube feeding patients	92% (11 out of 12)
	Hyponatremia resolved after dietary Na intake raised to 2 grams/day

Hyponatremia in tube-fed elderly men.

Rudman D. Racette D, Rudman IW, Mattson DE, Erve PR, Journal of Chronic Diseases. 39(2):73-80, 1986

- 15 men with organic brain syndrome receiving Isocal via gastrostomy as sole source of nutrition.
- Tube feeding duration 3 months 3 years
- Mean age 68 {46-92}

<u>Result</u>

- About half of them had intermittent hyponatremia

Hyponatremia in tube-fed elderly men. Rudman D. Racette D, Rudman IW, Mattson DE, Erve PR, Journal of Chronic Diseases. 39(2):73-80, 1986

Isocal supplemented with NaCI to give 2g Na/day	1 had hyponatremia
Unsupplemented	8 had hyponatremia
Isocal providing 1g	40% <135mmol/L
Na/day	14% <130mmol/L

4 hyponatremic patients changed to 2g Na/day --> normalisation of Na

Metabolic abnormalities in patients supported with enteral tube feeding.

Valandingham S, Simpson S. Daniel P , Newmark SR, Journal of Parenteral and Enteral Nutrition. 5(4):322-4, 1981 JUL-Aug

- 100 patients supported with tube feeding were evaluated.
- <u>Result</u>
- 31% has hyponatremia, 40% has hyperkalemia

Conclusion

- Electrolyte disturbance is common in patients on tube feeding
- Regular monitoring of RFT at the initial phase of starting RT feeding
- Consider to correct hyperkalemia by means of adding Na supplement to tube feeding in case of insufficient Na supply by enteric feeding regimen

Thank you!